studEE16A
  • Introduction
  • Linear Algebra
    • Linear Equations
      • Description
      • Example Problems
    • Vector Spaces
      • Description
      • Example Problems
    • Inner Products
      • Description
      • Example Problems
    • Determinants
      • Description
      • Example Problems
    • Eigen-everything
      • Description
      • Example Problems
    • Matrices
      • Description
      • Example Problems
    • Least Squares
      • Description
      • Example Problems
    • Gram-Schmidt
      • Description
      • Example Problems
    • Basis
      • Description
      • Example Problems
    • Page Rank
  • Circuits
    • Circuit Basics
    • Capacitance
    • Nodal Analysis
    • Superposition
    • Thevenin and Norton
    • What, When, Where, and Why?
    • Op Amps
Powered by GitBook
On this page

Was this helpful?

  1. Linear Algebra
  2. Vector Spaces

Description

PreviousVector SpacesNextExample Problems

Last updated 5 years ago

Was this helpful?

A vector space VVV is defined to be a set of elements that, for any u⃗,v⃗,z⃗∈V\vec{u}, \vec{v}, \vec{z} \in Vu,v,z∈V and c,d∈Rc, d \in \mathbb{R}c,d∈R, satisfies the following 10 properties:

  1. u⃗+v⃗∈V\vec{u} + \vec{v} \in Vu+v∈V

  2. cu⃗∈Vc\vec{u} \in Vcu∈V

  3. u⃗+v⃗=v⃗+u⃗\vec{u} + \vec{v} = \vec{v} + \vec{u}u+v=v+u

  4. (u⃗+v⃗)+z⃗=u⃗+(v⃗+z⃗)(\vec{u} + \vec{v}) + \vec{z} = \vec{u} + (\vec{v} + \vec{z})(u+v)+z=u+(v+z)

  5. There is a 0⃗∈V\vec{0} \in V0∈V, such that u⃗+0⃗=u⃗\vec{u} + \vec{0} = \vec{u}u+0=u.

  6. There exists a −u⃗-\vec{u}−u, such that u⃗+(−u⃗)=0⃗\vec{u} + (-\vec{u}) = \vec{0}u+(−u)=0.

  7. c(du⃗)=(cd)u⃗c(d\vec{u}) = (cd)\vec{u}c(du)=(cd)u

  8. (c+d)u⃗=cu⃗+du⃗(c + d)\vec{u} = c\vec{u} + d\vec{u}(c+d)u=cu+du

  9. c(u⃗+v⃗)=cu⃗+cv⃗c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}c(u+v)=cu+cv

  10. 1u⃗=u⃗1\vec{u} = \vec{u}1u=u

Most of these conditions are obvious, but the most important ones are the no escape properties (properties 1 and 2). In general, you do not need to memorize the 10 properties of vector spaces because we will hardly be dealing with vector spaces as a whole; instead, we will mostly use subspaces.

Definition of a subspace

A subset WWW of a vector space VVV is a subspace of VVV if the following two conditions are satisfied for any u⃗,v⃗∈W\vec{u}, \vec{v} \in Wu,v∈W and c∈Rc \in \mathbb{R}c∈R.

  1. u⃗+v⃗∈W\vec{u} + \vec{v} \in Wu+v∈W

  2. cu⃗∈Wc\vec{u} \in Wcu∈W

Consequently, to test if a subset forms a subspace, we need to check whether the 2 above properties are satisfied.