studEE16A
  • Introduction
  • Linear Algebra
    • Linear Equations
      • Description
      • Example Problems
    • Vector Spaces
      • Description
      • Example Problems
    • Inner Products
      • Description
      • Example Problems
    • Determinants
      • Description
      • Example Problems
    • Eigen-everything
      • Description
      • Example Problems
    • Matrices
      • Description
      • Example Problems
    • Least Squares
      • Description
      • Example Problems
    • Gram-Schmidt
      • Description
      • Example Problems
    • Basis
      • Description
      • Example Problems
    • Page Rank
  • Circuits
    • Circuit Basics
    • Capacitance
    • Nodal Analysis
    • Superposition
    • Thevenin and Norton
    • What, When, Where, and Why?
    • Op Amps
Powered by GitBook
On this page
  • Norm
  • Properties
  • Angle

Was this helpful?

  1. Linear Algebra
  2. Inner Products

Example Problems

Show that the inner product defined above for Rn\mathbb{R}^nRn as ⟨x⃗,y⃗⟩=x1y1+x2y2+⋯+xnyn\langle \vec{x}, \vec{y}\rangle = x_1y_1 + x_2y_2 + \cdots + x_ny_n⟨x,y​⟩=x1​y1​+x2​y2​+⋯+xn​yn​ fulfills the 4 properties of an inner product.

Let x⃗,y⃗,z⃗∈Rn\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^nx,y​,z∈Rn and α∈R\alpha \in \mathbb{R}α∈R.

  1. \begin{align*}\langle \vec{y}, \vec{x}\rangle &= y_1x_1 + y_2x_2 + \cdots + y_nx_n \\ &= x_1y_1 + y_2x_2 + \cdots + x_ny_n \\ &= \langle \vec{x}, \vec{y}\rangle\end{align*}

  2. \begin{align*}\langle \vec{x}, \vec{y} + \vec{z}\rangle &= x_1(y_1 + z_1) + x_2(y_2 + z_2) + \cdots + x_n(y_n + z_n) \\ &= x_1y_1 + x_2y_2 + \cdots + x_ny_n + x_1z_1 + x_2z_2 + \cdots + x_nz_n \\ &= \langle \vec{x}, \vec{y}\rangle + \langle \vec{x}, \vec{z}\rangle\end{align*}

  3. \begin{align*}\langle \alpha\vec{x}, \vec{y}\rangle &= \alpha x_1y_1 + \alpha x_2y_2 + \cdots + \alpha x_ny_n \\ &= \alpha(x_1y_1 + x_2y_2 + \cdots + x_ny_n) \\ &= \alpha \langle \vec{x}, \vec{y}\rangle\end{align*}

  4. ⟨x⃗,x⃗⟩=x12+x22+⋯xn2\langle \vec{x}, \vec{x}\rangle = x_1^2 + x_2^2 + \cdots x_n^2⟨x,x⟩=x12​+x22​+⋯xn2​.

    Since every component is squared, we know that ⟨x⃗,x⃗⟩≥0\langle \vec{x}, \vec{x}\rangle \geq 0⟨x,x⟩≥0. Let us check when x12+x22+⋯xn2=0x_1^2 + x_2^2 + \cdots x_n^2 = 0x12​+x22​+⋯xn2​=0. Since we are adding each component squared, all components must be 000 in order for this sum to be 000 as well, i.e. x⃗\vec{x}x must be the zero vector. Therefore, ⟨x⃗,x⃗⟩=0  ⟺  x⃗=0⃗\langle \vec{x}, \vec{x}\rangle = 0 \iff \vec{x} = \vec{0}⟨x,x⟩=0⟺x=0.

Norm

The norm of a vector x⃗∈V\vec{x} \in Vx∈V is its length. We denote the norm as ∥x⃗∥:V→R\|\vec{x}\|: V \rightarrow \mathbb{R}∥x∥:V→R.

For vectors in Rn\mathbb{R}^nRn, to find the length of a vector x⃗=[x1x2⋮xn]\vec{x} = \begin{bmatrix}x_1 \\ x_2 \\ \vdots \\ x_n\end{bmatrix}x=​x1​x2​⋮xn​​​, we use the Pythagorean theorem.

∥x⃗∥=x12+x22+⋯+xn2=⟨x⃗,x⃗⟩\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2} = \sqrt{\langle \vec{x}, \vec{x}\rangle}∥x∥=x12​+x22​+⋯+xn2​​=⟨x,x⟩​

Therefore, we can express the inner product of x⃗\vec{x}x with itself as the square of its norm:

⟨x⃗,x⃗⟩=∥x⃗∥2\langle \vec{x}, \vec{x}\rangle = \|\vec{x}\|^2⟨x,x⟩=∥x∥2

Properties

Norms have to fulfill 3 properties for x⃗,y⃗∈V\vec{x}, \vec{y} \in Vx,y​∈V and α∈R\alpha \in \mathbb{R}α∈R:

  1. Nonnegativity: ∥x⃗∥≥0\|\vec{x}\| \geq 0∥x∥≥0, where ∥x⃗∥=0\|\vec{x}\| = 0∥x∥=0 if and only if x⃗=0⃗\vec{x} = \vec{0}x=0

  2. Scaling: ∥αx⃗∥=∣α∣∥x⃗∥\|\alpha \vec{x}\| = |\alpha|\|\vec{x}\|∥αx∥=∣α∣∥x∥

  3. Triangle inequality: ∥x⃗+y⃗∥≤∥x⃗∥+∥y⃗∥\|\vec{x} + \vec{y}\| \leq \|\vec{x}\| + \|\vec{y}\|∥x+y​∥≤∥x∥+∥y​∥, where ∥x⃗+y⃗∥=∥x⃗∥+∥y⃗∥\|\vec{x} + \vec{y}\| = \|\vec{x}\| + \|\vec{y}\|∥x+y​∥=∥x∥+∥y​∥ if and only if x⃗=αy⃗\vec{x} = \alpha\vec{y}x=αy​ (i.e. when x⃗\vec{x}x and y⃗\vec{y}y​ are parallel)

Angle

We define the angle θ\thetaθ between 2 vectors x⃗,y⃗\vec{x}, \vec{y}x,y​ using the following equation:

⟨x⃗,y⃗⟩=∥x⃗∥∥y⃗∥cos⁡θ\langle \vec{x}, \vec{y}\rangle = \|\vec{x}\|\|\vec{y}\|\cos\theta⟨x,y​⟩=∥x∥∥y​∥cosθ

cos⁡θ=⟨x⃗,y⃗⟩∥x⃗∥∥y⃗∥\cos\theta = \frac{\langle \vec{x}, \vec{y}\rangle}{\|\vec{x}\|\|\vec{y}\|}cosθ=∥x∥∥y​∥⟨x,y​⟩​

PreviousDescriptionNextDeterminants

Last updated 5 years ago

Was this helpful?

Angle between 2 vectors