studEE16A
  • Introduction
  • Linear Algebra
    • Linear Equations
      • Description
      • Example Problems
    • Vector Spaces
      • Description
      • Example Problems
    • Inner Products
      • Description
      • Example Problems
    • Determinants
      • Description
      • Example Problems
    • Eigen-everything
      • Description
      • Example Problems
    • Matrices
      • Description
      • Example Problems
    • Least Squares
      • Description
      • Example Problems
    • Gram-Schmidt
      • Description
      • Example Problems
    • Basis
      • Description
      • Example Problems
    • Page Rank
  • Circuits
    • Circuit Basics
    • Capacitance
    • Nodal Analysis
    • Superposition
    • Thevenin and Norton
    • What, When, Where, and Why?
    • Op Amps
Powered by GitBook
On this page
  • Basic Properties of Determinants
  • Derived Properties of Determinants

Was this helpful?

  1. Linear Algebra
  2. Determinants

Description

Basic Properties of Determinants

  1. The determinant of the identity matrix is 111.

    • Scaling one row by a factor kkk multiplies the determinant by kkk.

      A=[abcd]\textbf{A} = \begin{bmatrix}a & b \\ c & d\end{bmatrix}A=[ac​bd​]

      Multiplying the first row by kkk

      det([kakbcd])=k⋅det(A)\text{det}\left(\begin{bmatrix} ka & kb \\ c & d\end{bmatrix}\right) = k \cdot \text{det}(A)det([kac​kbd​])=k⋅det(A)

    • Additivity

      det([a+a′b+b′cd])=det([abcd])+det([a′b′cd])\text{det}\left(\begin{bmatrix}a + a' & b + b' \\ c & d\end{bmatrix}\right) = \text{det}\left(\begin{bmatrix}a & b \\ c &d\end{bmatrix}\right) + \text{det}\left(\begin{bmatrix}a' & b' \\ c & d\end{bmatrix}\right)det([a+a′c​b+b′d​])=det([ac​bd​])+det([a′c​b′d​])

  2. A row exchange reverses the sign of the determinant.

    det([abcd])=−det([cdab])\text{det}\left(\begin{bmatrix}a & b \\ c & d\end{bmatrix}\right) = -\text{det}\left(\begin{bmatrix}c & d \\ a & b\end{bmatrix}\right)det([ac​bd​])=−det([ca​db​])

Using these properties allows you to derive many other properties of determinants!

Derived Properties of Determinants

  1. If A\textbf{A}A has two equal rows, det(A)=0\text{det}(\textbf{A}) = 0det(A)=0. Let A=[abab]\textbf{A} = \begin{bmatrix}a & b \\ a & b\end{bmatrix}A=[aa​bb​]. By basic property 3: det([abab])=−det([abab])\text{det}\left(\begin{bmatrix}a & b \\ a & b\end{bmatrix}\right) = -\text{det}\left(\begin{bmatrix}a & b \\ a & b\end{bmatrix}\right)det([aa​bb​])=−det([aa​bb​]) The only way this will hold true is if det([abab])=0\text{det}\left(\begin{bmatrix}a & b \\ a & b\end{bmatrix}\right) = 0det([aa​bb​])=0 From this, we conclude that if A\textbf{A}A has two equal rows, det(A)=0\text{det}(\textbf{A}) = 0det(A)=0. If A\textbf{A}A has two equal rows, this means that A\textbf{A}A has linearly dependent rows. Consequently, we can conclude that if the det(A)=0\text{det}(\textbf{A}) = 0det(A)=0, the matrix has linearly dependent rows and is not invertible.

  2. Adding or subtracting a row to or from another row does not change the determinant. Let A=([abcd])\textbf{A} = \left(\begin{bmatrix}a & b \\ c & d\end{bmatrix}\right)A=([ac​bd​]) Solving for the determinant after multiplying the first row by t and adding it to the first row gives: det([abc+tad+tb])\text{det}\left(\begin{bmatrix}a & b \\ c + ta & d + tb\end{bmatrix}\right)det([ac+ta​bd+tb​]) By basic property 2 and derived property 1:

det([abc+tad+tb])=det([abcd])+det([abtatb])\text{det}\left(\begin{bmatrix}a & b \\ c + ta & d + tb\end{bmatrix}\right) = \text{det}\left(\begin{bmatrix}a & b \\ c & d\end{bmatrix}\right) + \text{det}\left(\begin{bmatrix}a & b \\ ta & tb\end{bmatrix}\right)det([ac+ta​bd+tb​])=det([ac​bd​])+det([ata​btb​]) =det([abcd])+t⋅det([abab])=\text{det}\left(\begin{bmatrix}a & b \\ c & d\end{bmatrix}\right) + t \cdot \text{det}\left(\begin{bmatrix}a & b \\ a & b\end{bmatrix}\right)=det([ac​bd​])+t⋅det([aa​bb​]) det([abab])=0\text{det}\left(\begin{bmatrix}a & b \\ a & b\end{bmatrix}\right) = 0det([aa​bb​])=0 Therefore: det([abcd])+t⋅0=det([abcd])\text{det}\left(\begin{bmatrix}a & b \\ c & d\end{bmatrix}\right) + t \cdot 0 =\text{det}\left(\begin{bmatrix}a & b \\ c & d\end{bmatrix}\right)det([ac​bd​])+t⋅0=det([ac​bd​]) 3. The determinant of a matrix in upper triangular, or lower triangular, form is equal to the product of the values on the diagonal. det([a0cd])=a⋅d\text{det}\left(\begin{bmatrix}a & 0 \\ c & d\end{bmatrix}\right) = a \cdot ddet([ac​0d​])=a⋅d and det([ab0d])=a⋅d\text{det}\left(\begin{bmatrix}a & b \\ 0 & d\end{bmatrix}\right) = a \cdot ddet([a0​bd​])=a⋅d As a simpler case, let's prove that the determinant of a diagonal matrix is the product of the diagonal. Let A=([a00d])A = \left(\begin{bmatrix}a & 0 \\ 0 & d\end{bmatrix}\right)A=([a0​0d​]) Using basic property 1 and 2a: det(A)=ad⋅det([1001])\text{det}(\textbf{A}) = a d \cdot \text{det}\left(\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\right)det(A)=ad⋅det([10​01​]) (Property 2) The determinant of the identity matrix is 1 (property 1). Therefore: det(A)=ad⋅1=ad\text{det}(\textbf{A}) = a d \cdot 1 = a ddet(A)=ad⋅1=ad This property can be extended to matrices in upper or lower triangular form using derived property 2. We can reduce a matrix in upper or lower triangular form to diagonal form by multiplying and adding rows to have 0's above all pivots.

PreviousDeterminantsNextExample Problems

Last updated 5 years ago

Was this helpful?