Description

Inner products are operations from V×VRV \times V \rightarrow \mathbb{R}. They must fulfill the following 4 properties for any x,y,zV\vec{x}, \vec{y}, \vec{z} \in V and αR\alpha \in \mathbb{R}:

  1. Commutativity: x,y=y,x\langle \vec{x}, \vec{y}\rangle = \langle \vec{y}, \vec{x}\rangle

  2. Distributivity: x,y+z=x,y+x,z\langle \vec{x}, \vec{y} + \vec{z}\rangle = \langle \vec{x}, \vec{y}\rangle + \langle \vec{x}, \vec{z}\rangle

  3. Scaling: αx,y=αx,y\langle \alpha\vec{x}, \vec{y}\rangle = \alpha\langle \vec{x}, \vec{y}\rangle

  4. Nonnegativity: x,x0\langle \vec{x}, \vec{x}\rangle \geq 0, where x,x=0\langle \vec{x}, \vec{x}\rangle = 0 if and only if x=0\vec{x} = 0.

In this class, we are going to use the inner product in the vector space Rn\mathbb{R}^n that is defined as follows (commonly known as the dot product): Let x=[x1x2xn]\vec{x} = \begin{bmatrix}x_1 \\ x_2 \\ \vdots \\ x_n\end{bmatrix} and y=[y1y2yn]\vec{y} = \begin{bmatrix}y_1 \\ y_2 \\ \vdots \\ y_n\end{bmatrix}.

x,y=[x1x2xn],[y1y2yn]=x1y1+x2y2++xnyn\langle \vec{x}, \vec{y}\rangle = \left\langle \begin{bmatrix}x_1 \\ x_2 \\ \vdots \\ x_n\end{bmatrix}, \begin{bmatrix}y_1 \\ y_2 \\ \vdots \\ y_n\end{bmatrix}\right\rangle = x_1y_1 + x_2y_2 + \cdots + x_ny_n

Last updated