studEE16A
  • Introduction
  • Linear Algebra
    • Linear Equations
      • Description
      • Example Problems
    • Vector Spaces
      • Description
      • Example Problems
    • Inner Products
      • Description
      • Example Problems
    • Determinants
      • Description
      • Example Problems
    • Eigen-everything
      • Description
      • Example Problems
    • Matrices
      • Description
      • Example Problems
    • Least Squares
      • Description
      • Example Problems
    • Gram-Schmidt
      • Description
      • Example Problems
    • Basis
      • Description
      • Example Problems
    • Page Rank
  • Circuits
    • Circuit Basics
    • Capacitance
    • Nodal Analysis
    • Superposition
    • Thevenin and Norton
    • What, When, Where, and Why?
    • Op Amps
Powered by GitBook
On this page

Was this helpful?

  1. Linear Algebra
  2. Inner Products

Description

Inner products are operations from V×V→RV \times V \rightarrow \mathbb{R}V×V→R. They must fulfill the following 4 properties for any x⃗,y⃗,z⃗∈V\vec{x}, \vec{y}, \vec{z} \in Vx,y​,z∈V and α∈R\alpha \in \mathbb{R}α∈R:

  1. Commutativity: ⟨x⃗,y⃗⟩=⟨y⃗,x⃗⟩\langle \vec{x}, \vec{y}\rangle = \langle \vec{y}, \vec{x}\rangle⟨x,y​⟩=⟨y​,x⟩

  2. Distributivity: ⟨x⃗,y⃗+z⃗⟩=⟨x⃗,y⃗⟩+⟨x⃗,z⃗⟩\langle \vec{x}, \vec{y} + \vec{z}\rangle = \langle \vec{x}, \vec{y}\rangle + \langle \vec{x}, \vec{z}\rangle⟨x,y​+z⟩=⟨x,y​⟩+⟨x,z⟩

  3. Scaling: ⟨αx⃗,y⃗⟩=α⟨x⃗,y⃗⟩\langle \alpha\vec{x}, \vec{y}\rangle = \alpha\langle \vec{x}, \vec{y}\rangle⟨αx,y​⟩=α⟨x,y​⟩

  4. Nonnegativity: ⟨x⃗,x⃗⟩≥0\langle \vec{x}, \vec{x}\rangle \geq 0⟨x,x⟩≥0, where ⟨x⃗,x⃗⟩=0\langle \vec{x}, \vec{x}\rangle = 0⟨x,x⟩=0 if and only if x⃗=0\vec{x} = 0x=0.

In this class, we are going to use the inner product in the vector space Rn\mathbb{R}^nRn that is defined as follows (commonly known as the dot product): Let x⃗=[x1x2⋮xn]\vec{x} = \begin{bmatrix}x_1 \\ x_2 \\ \vdots \\ x_n\end{bmatrix}x=​x1​x2​⋮xn​​​ and y⃗=[y1y2⋮yn]\vec{y} = \begin{bmatrix}y_1 \\ y_2 \\ \vdots \\ y_n\end{bmatrix}y​=​y1​y2​⋮yn​​​.

⟨x⃗,y⃗⟩=⟨[x1x2⋮xn],[y1y2⋮yn]⟩=x1y1+x2y2+⋯+xnyn\langle \vec{x}, \vec{y}\rangle = \left\langle \begin{bmatrix}x_1 \\ x_2 \\ \vdots \\ x_n\end{bmatrix}, \begin{bmatrix}y_1 \\ y_2 \\ \vdots \\ y_n\end{bmatrix}\right\rangle = x_1y_1 + x_2y_2 + \cdots + x_ny_n⟨x,y​⟩=⟨​x1​x2​⋮xn​​​,​y1​y2​⋮yn​​​⟩=x1​y1​+x2​y2​+⋯+xn​yn​

PreviousInner ProductsNextExample Problems

Last updated 5 years ago

Was this helpful?