studEE16A
  • Introduction
  • Linear Algebra
    • Linear Equations
      • Description
      • Example Problems
    • Vector Spaces
      • Description
      • Example Problems
    • Inner Products
      • Description
      • Example Problems
    • Determinants
      • Description
      • Example Problems
    • Eigen-everything
      • Description
      • Example Problems
    • Matrices
      • Description
      • Example Problems
    • Least Squares
      • Description
      • Example Problems
    • Gram-Schmidt
      • Description
      • Example Problems
    • Basis
      • Description
      • Example Problems
    • Page Rank
  • Circuits
    • Circuit Basics
    • Capacitance
    • Nodal Analysis
    • Superposition
    • Thevenin and Norton
    • What, When, Where, and Why?
    • Op Amps
Powered by GitBook
On this page

Was this helpful?

  1. Linear Algebra
  2. Basis

Description

PreviousBasisNextExample Problems

Last updated 5 years ago

Was this helpful?

For a subspace VVV, we define a basis B\mathcal{B}B as an ordered set of vectors {v⃗1,v⃗2,…,v⃗n}\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}{v1​,v2​,…,vn​}, such that

  1. span{v⃗1,v⃗2,…,v⃗n}=V\text{span}\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\} = Vspan{v1​,v2​,…,vn​}=V and

  2. {v⃗1,v⃗2,…,v⃗n}\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}{v1​,v2​,…,vn​} is linearly independent.

Because of these properties, we can express any vector in the vector space VVV as a linear combination of the basis vectors.

Note: The order of the basis vectors matters for a basis!

If we don't specify a basis, we are usually referring to the standard basis S={[100⋮0],[010⋮0],…,[000⋮1]}\mathcal{S} = \left\{\begin{bmatrix}1 \\ 0 \\ 0 \\ \vdots \\ 0\end{bmatrix}, \begin{bmatrix}0 \\ 1 \\ 0 \\ \vdots \\ 0\end{bmatrix}, \ldots, \begin{bmatrix}0 \\ 0 \\ 0 \\ \vdots \\ 1\end{bmatrix}\right\}S=⎩⎨⎧​​100⋮0​​,​010⋮0​​,…,​000⋮1​​⎭⎬⎫​.

In fact, we have been almost always using the standard basis vectors. For example, let v⃗=[542]\vec{v} = \begin{bmatrix}5 \\ 4 \\ 2\end{bmatrix}v=​542​​ in the standard basis.

v⃗=[542]=5[100]+4[010]+2[001]\vec{v} = \begin{bmatrix}5 \\ 4 \\ 2\end{bmatrix} = 5\begin{bmatrix}1 \\ 0 \\ 0\end{bmatrix} + 4\begin{bmatrix}0 \\ 1 \\ 0\end{bmatrix} + 2\begin{bmatrix}0 \\ 0 \\ 1\end{bmatrix}v=​542​​=5​100​​+4​010​​+2​001​​

To be precise, we therefore write

[v⃗]S=[542][\vec{v}]_\mathcal{S} = \begin{bmatrix}5 \\ 4 \\ 2\end{bmatrix}[v]S​=​542​​